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Abstract

G/SPLINES ate a hybrid of Friedman's Multi-
variable Adaptive Regression Splines (MARS)
algorithm with Holland's Genetic Algorithm. In
this hybrid, the incremental search is replaced by
a genetic search. The G/SPLINE algorithm
exhibits performance comparable to that of the
MARS algorithm, requires fewer least-squares
computations, and allows significantly larger
problems to be considered.

1 INTRODUCTION

Many problems in diverse fields of study can be formu-
lated into the problem of approximating a function from a
set of sample points. For functions of few variables a
lazgebodyofstatisticalmethodologyexists;thesemeth-
odsoffer robust and effective approximations. For func-
tions of many variables, relatively fewer techniques are
available, and these techniques may not perform ade-
quately in the desiredhigh-dimensional setting.The inter-
eat in so-cnlle,d neural-networkmodels is due in part to
their performance in these high-dimensional multivariate
environments.

One class of algorifluns proposed for high-dimensional
environments rely on local variable selection to reduce
the number of input dimensions during model construc-
tion. These methods approximate the desired function
locally using only a subset of the la_e number of possi-
ble input dimensions. Some of the members of this class
of algorithms are k-d Trees [1], CART [2], and Basis
Function Trees [10]. These algorithms build an approxi-
mation model starting with the constant model, and refine
the model incrementally by adding new basis functions.

Recently Friedman proposed another algorithm in this
class, the Multivariate Adaptive Regression Splines
(MARS) algorithm[5]. This statistical approach performs
quite favorably with respect to many neural-network
models. Unfortunately, the algorithm is too computation-
ally intensive for use in problems that involve large
(>10(30) sample sizes or extremely high (>20) dimen-

sions.Thisbehavim"iscausedby thestructureof the

MARS algorithm,whichbuildsmodelsincrementallyby
testingalargeclassofpossibleextensionstoapartially-
constructedsplineregressionmodel,thenaddingthebest
extension.

G/SPIANES area hybridof Friedman'sMultivariable

AdaptiveRegressionSplines(MARS) algorithmwith
Holland'sGeneticAlgorithm[8].Inthishybrid,theincre-
mentalsearchis replacedby a geneticsearch.The
G/SPLINE algorithmexhibitsperformancecomparable
tothatoftheMARS algorithm,requireslesscomputa-
tion,and allowssignificantlylargerproblemstobe con-
sidered.

In this paper I begin with a discussion of the problem of
functional approximation models, and the use of splines
inthesemodels.Ithen describethe MARS algorithmand
estimatethe number of least-squaresregressionsit

requires.I followwitha descriptionof theG/SPLINE
algorithm.I concludewithexperimentstoilluswateits
performance relative to the MARS algorithm and to study
properties unique to G/SPLINES.

2 THE PROBLEM

We are given a set of N data samples {Xi}, with each data
sample Xi being a n-dimensional vector of predictor vari-
ables <xa, x,_ ..... x_>. We are also given a set of N
responses {Yi}. We assume that th_ samples are derived
from an underlying system of the form:

Yi = f(Xi) + error = f(xil, ..., Xin) + error

The goal is to develop a model G(X) which minimizes
some error criterion, such as the least-squares error:.

N
1

LSE(G) - _ Z (Yi-G(X/)) 2
i=1

I.To appearintheproceedingsoftheFourthInternationalConferenceon GeneticAlgorithms,SanDiego,July1991.



The model O is commonly consl_'ucted as a linear combi-
nation using some set of basis functions:

M

= a0+ ak*k(X)
k=l

Given an appropriate set of basis functions, standard
least-squares regression techniques can be used to find a
set of coefficients {ak} which minimizes the least-
squared error [9]. This process suffers from two major
weaknesses. First, ff the basis functions for G do not
reflect the underlying global structure of the function F,
the accuracy of G is likely to be poor. Second, ff too many
basis "functions are used in the approximation, the model
may suffer fi'om overfitting; while it generates reasonable
approximations fox F when given a data sample in {Xi},
previously unseen data samples may generate large
errors. See Figure 1.
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Figure h Overfiuing. Using polynomials as the basis
functions in consu'ucting G, we create an
approximation which exactly fits the dam sample
points but does not approximate the underlying
function F well in other regions of the domain.

3 SPLINE APPROXIMATIONS

Spline functions have been used toaddress some of the
difficulties mentioned in the previous section. The basic
idea is that if global models are difficult to construct and
often poorly behaved, it may be preferable to build a
model piecewise using linear or low-order polynomials,
each defined locally over some subregion of the domain.
Because they are nonzero only in a part of the domain,
they can represent local structure of functions that may
not have easily-modeled global structure [4].

Such a setofsplinebasisfunctionsinone dimensionis

givenby:

I,x, (x--tl)+, (x --t2)+, ...,(x--ix) +

which leads to models of the form:

K

G(x) = a0+alx+ Z ak+l(X-tk) +
k=l

(In this notation, the subscript '%" means that the expres-
sion is assigned a value of zero if the argument is nega-
five.) This type of spline is called a truncated power
spline. The variables tt are called "knots"; they are the
locations where the spline functions subdivide the
domain. The full basis set has a size (K + 2). A graph of
one of these basis functions is shown in Figure 2.
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Figure 2: 5pline Function. A apline function is zero over
part of a domain, and a low-order polynomial over the
remainder of the domain. This 1-power spline is
continuous but has a discontinuous derivative. A q-
power spline is continuous and has (q - 1) continuous
derivatives.

Splines perform quite successfully in building low-
dimensional models, but the extension to higher dimen-
sions hasproven, in the understatedwordsofFriedman,
"straightforward in principle but difficult in practice."
Specifically, the standard extension of splines to higher
dimensions requires (K + q + 1) n basis functions and the
calculation of a corresponding number of coefficients;
here, n is the number of input dimensions, K is the num-
ber of knotsperdimension,and q istheorder of the
splines. Even for a relatively small number of dimen-
sions, the computational costs of calculating the coeffi-
cients and the large numb_ of data samples needed
makes the procedure prohibitive.

4 THE MARS ALGORITHM

The MARS algorithm was developed to allow spline
approximations in high-dimensional settings. The basic
ideaistobuildthemodel usingonlyasmallsubsetof the
CK + q + I)n proposedbasisfunctions.Thisisdone by
extendingapartialmodelusinganincrementalsearch for
thebestnew partitionofthedomain.Thispartitioningis
repeateduntila model withthe desirednumber ofterms

iSdeveloped.



The algorithm begins with the linear model:

Go(X) = ao

At each partitioning step, the current model is extended
by selecting: a basis function currently in the model; a
dimension not currently partitioned in that basis function;
and a knot location, assigned by selecting in turn the
value for that dimension in each data sample. This triple
Co,v, 0 defmes a possible extension to the current model:

Gm+2(X) = Gm(X)

+ am+ IBFb(X) (xv--t)+

+ am+2BFb(X )(t- xv) +

The coefficientsof thenewlygeneratedmodelarecom-

putedusingleast-squaresregression.Allpossibleuiples
ofCo, v, 0 are tried;the model Gm+2(X) which best fits
the datasamplesisselected,and becomes thecurrent
model for ftmherpartitioning.A more detailed"C"

description of the core MARS algorithm is given in Fig-
tLre3. _

The most computationally-intensive part of the MARS
algorithm is the calculation of the least-squares coeffi-
cients for the newly proposed model. Thus, one estimate
of the cost of building the final model is the number of
least-squares regressions that must be performed. The
upper limit on the number of models the MARS algo-
rithm must generate and test at a given step is (N*m*n),
where N is the number of data samples, m is the current
number of basis functions in the model, and n is the num-
ber of input dimensions. If the number of basis functions
in the final model is M,,,,_, the maximum number of mod-
els generated is:

max models -

m
u

Mmax

2

(Nxn) x Z (2m+l)
m=l

(Nxn) ----_-ax + Mmax

1. Figure 3 contains what Friedman calls the forward
stepwise portion of the algorithm; I do not describe the
backwards stepwise portion in this paper. That procedure
is a pruning process conducted on the model discovered
by the forward stepwise algorithm; it gives some minor
additionaloptimization.(Intheexperimental, however,
bothforwardandbackwardstepwiscsectionswereused

beforecomparisonwithG/SPLINES.)

}
}

}

1 Model = constant_model0;
2 for (size = i; size <= numb__of_BFs; size += 2) {
3 lowestscore ffiINF;
4 for(m= 1;m <= size;m++) {
5 vat= NONE;
6 while (vat =next_unused_var(BF (m), vat)) {
7 for (s = 1; s <= number_of_samples; s-H-){
8 if (basis_functionnonzero(BF(m), data[s])) {
9 knot=data[s][vail;
10 new=partition(Model,BF(m),vat.knot);
11 least_squares_fit(new);
12 new_scoreffiLOF(new,dam);
13 ff (new_score< lowest_score){
14 best_modelffinew;
15 lowest_score= new_score;
16 }
17 }
18
19
20
21
22

Model = best..model;
}

Figure 3: The MARS Algorithm. The MARS algorithm
is an incremental search to find the best new
partition to the current splint model, starting with
the constant model. The outer loop is over the
number of desired partitions; the inner three loops
choose a basis functmn, variable, and knot. The new
modelistestedafterleast-squaresregressionusing.a
lackoffit(I.OF)function,andthebestnew modelts
usedforthenextpartitioning.

"ll_egood news is that the number of mtermediate models
is linear in both the number of samples N and the number
of input dimensions n. The bad news is that this can still
be a very large number of intermediate models, so the
MARS algorithm can only be used with a relatively small
number of data samples and input dimensions. Friedman
claims the algorithm is effective for up to 1,000 data sam-
ples and 20 input dimensions; this places many interest-
ing problems out of reach of the procedure.

Further, while the MARS algorithm is effective at creat-
ing well-performing models for many problems, models
which cannot be reached throughan incrementalsearch
are not discovered. Thus, functions which have a large
number of non-linear interactions between the input vari-
ables may not be well-suited to modeling using the
MARS algorithm.

5 G/SPLINES

The idea behind G/SPLINES is to use a genetic algorithm
to do a search using full-size models rather than using the
incremental search. The G/SPLINE algorithm starts with
a collection of functional models, generated randomly.
The coefficients for each model are determined using
least-squares regression, and the lack of fit (LOF) over
the dam set is measured. The inverse of that lack of fit
score is used as the fitness criterion. The main cycle
begins by probabilistically choosing two parent models



based on their inverse LOF score. Crossover is used to
generate a new model. Mutation operators may be used to
add additional terms to the model. The worst scoring
function in the collection is then replaced by this new
model. A more detailed "C" description of the G/SPLINE
algorithm is given in Figure 4.

1 for (i _0; i <number_of_functions;i++) {
2 fen[i] = random_funcdonO;
3 leas__uluares_fit(fm[i]);
4 function_store[i]= 1.0/ LOF(fm[i], data);
5 }
6 for (i ffi1; i < number_of..cy¢les;i-H-){
7 select permts(funcfion_u:ore, &parl,&Imr2);
8 child = woru_fonction(function r_ore);
9 crossover(fcn[parl], fcn[par2],fro[child]);
10 if (rmdom_new_mutation0)
11 add new_BF(fen[child]);
12 if.(rmdom merged..mutafion0)
13 add_merged_BF(fcn[parl],fcn[par2],fc_[child]);
14 _st_s_am_fit(f_[iD;
15 fm_tion__ore[_ = 1.01LOF(fm[¢hild], data);
16 }
17 model = best_functlon(fimmion_score);

Figure 4: The G/SPLINE Algorithm. The G/SPLINE
algorithm is a genetic search over a set of models,
replacing the worst model with a crossover of two
f_ghly-ratedmodels,usinganinitialsetupofrandom
ncuons,tne modelsaretestedafterleast-squares

regressionusingtheinverseofa lackoffit(IX)F)
fimcdon as the fimess score.

5.I CROSSOVER

M 1

Model-10C) --- a 0 + ___ akCk(X)
k=l

M2

Model-200 = b 0 + E bkflk(X)
k=l

Ill eacli parent model, we randomly choose a cut point,
and select one of the generated two segments for inclu-
sion into the child. We denote the selected segments of
each models with the inclusive sets [Starq, End l] and
[Start2, End2]. We then construct the new child model as:

End_

Child-Model(X) = c + Z dkOk(X)

k= Start1

End 2

+ etPt(x)
k= Stm't 2

The child model is a linear combination of basis functions
derived from each parent. (Some genetic algorithms use
the unselected segments to create an additional child; in
this initial work, I found that creating both children did
not appreciably improve the performance of the
G/SPLINES algorithm.)Once thebasisfunctionsforthe
child are determined, the coefficients are derived using a
standard least-squares regression.

5.2 MUTATION OPERATORS

The core process in the G/SPLINE algorithm is a cross- As the crossover process proceeds, two effects are seen.
over algorithm. In G/SPLINE, two well-performing mod- Fkst, the number of different basis functions is reduced
els are chosen, and the worst-performing model in the
system is chosen for replacement. (While there are a
number of possible procedures that could be used, basis
functions seemed natural as the atomic unit in the cross-
over algorithm.)

The fimess function used was the inverse of the lack-of-
fit function developed by Friedman in his MARS
research. The lack of fit function is based on the least-
squared error, with an additional penalty term related to
the size of the model and the number of data samples.
Without this penalty, the size of the models grows with-
out bound, resulting in increased computational costs and
increased risk of overfitfing. Since both MARS and
G/SPLINF_ use the same lack-of-fit function as their
error measure, comparisons between MARS and
G/SPLINES are more informative.

Theprocess begins by probabifisfi_y selecting two par-
ents based upon the inverse lack-of-fit score. The two
model parents are in this form:

as combinations of better-approximating basis functions
propagate through the models. Second, the models often
contain basis functions which contribute no benefit to the
qualityof themodeland increasesthecostoftheleast-
squares computation. To counteract these effects I used
three mutation operators: NEW, MERGE, and DELE-
TION. Afterthe standardcrossoverisperformed,themis
aprobabilitythatonecrmore ofthesemutationoperators
may be applied,resultingintheadditionorremovalof
basisfunctions.

The NEW operatorcreatesa new basisfunctionby ran-
domly choosingan inputvariablev,a signs (+l or -I),
and a dam sample <t 1..... tn>. These parameters are used
to create a basis function of the form:

BFnew(X) = (s" (x v- tv) ) +



TheMERGEoperatortakesarandombasisfunctionfrom
each parent, and creates a new basis function by multiply-
ing them together, that is:

BFnew(X ) = randBF(X, parl) • randBF(X, par2)

It is through the MERGE operator that basis functions
containing multiplicative terms are introduced.

For both ADD and MERGE, the newly generated basis
function is added to the new model generated by the
crossover process. This has a cost for functions, which
find the crossover search slowed by the additional vari-
ance mused by this additional factor. However, in the
longer term, this keeps the pool of basis functions from
becoming dangerously small, and aids the process in
finding high-quality approximations.

The DELETION operator ranks the basis functions in
order of minimum maximum contribution to the gener-
ated model. Unlike the other two mutation operators,
DELETION requires an additional least-squares opera-
tion to calculate the coefficients of the generated model.
However, while it doubles the number of least-squared
operations, it also speeds convergence and encourages
compact models.

5.3 ALPHABET CARDINALITY

Considerable study has gone into developing effective
codings for genetic algorithms, but coding design
remains an art. In this work, an alphabet of high cardinal-
ity seemed the most appropriate: the basis functions are
the atomic unit in the crossover process, and there is an
extremely large number of possible basis functions. How-
ever, this choice places the work in the middle of an
ongoing debate regarding the size of the alphabet best
suited for genetic algorithms.

One school, of which Goldberg [6] is representative, is
"almost obsessed with the idea of binary codings." This is
not simply a preference for binary representations, but
rather a rejection of other representations: "... in general
the use of high-cardinality alphabets so severely reduces
implicit parallelism that it is inappropriate to call these
schemes genetic algorithms in the sense of Holland."

In reality, this argument is a poorly-disgnised version of
the holism/reductionism debate; what is the "appropriate"
level of description? [7] Goldberg may be semantically
correct in stating that high-cardinality alphabets do not
result in "genetic algorithms in the sense of Holland," but
he is mistaken to assume that the use of a high-cardinality
alphabet "severely reduces implicit parallelism"; by using
a higher-level description, the search (and resulting
implicit parallelism) is simply being conducted on a dif-
ferent level of representation, not eliminated, bJguments
can certainly be given for and against the use of different
alphabets in different situations, but across-the-board
claims of-superiority for one side or another should be
viewed with great suspicion.

6 EXPERIMENTAL

A traininganda testdatasetwerecreatedfortheexperi-
ments.Each dataset contained200 datasamples. The
function modeled was from Friedman [5]:

f(X) - I0" sin (_xlx 2)

+20. (x 3- 1/2) 2

+ 10. x4+5. x 5
10

+ ZO'xn
n---6

The data contained 10 predictor variables: the response is
dependent on the first five variables, and independent of
the next five variables. Noise was added to the response
so that the signal/noise ratio was 4.8/1.0.

The domain for G/SPLINE was a population of 200 func-
lions. Each function was initialized with 10 basis func-
tions generated using the NEW mutation operator. After
each crossover, there was some probability that one or
more of the mutation operators would be applied to the
child. The model with the lowest error on the training
data set was chosen for testing against the testing data set.

The model generated by the MARS algorithm was
reduced using his backward-stepwisealgorithm, then
applied tothe testing dataset.

6.1 Experiment I

The first experiment was designed to see if the
G/SPLINE algorithm could compete with the MARS
algorithm in being able to generate models with compara-
ble quality in an environment that favored the MARS
algorithm.

The least-sqnax_ error versus the number of least-
squared regression operationswas graphed. The results of
this experiment are shown in Figure 5.

This experiment illustrates the rapid learning capability
of the G/SPLINE algorithm relative to the MARS algo-
rithm. After 5000 least-squares operations, the MARS
model has placedits firstknot;theGISPLINE algorithm
is alreadynearing itsasymptote.The finalMARS model
slightlyoutperformedtheG/SPLINES model,butonly
after doing an order-of-magnitude more least-squares

operations.

Did the model found by the genetic search use relation-
ships in the data set reflective of the underlying function,
or only discover easily-modeled patterns in random data?
Figure 6 addresses this issue; it demonstrates how the
variable use in the set of discovered models indeed
reflects the underlying structure of the generating func-
tion.
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Figure 5: MARS vs. G/SPL1NE. Measured in the
number of least squares regression operations that
must be performed, the G/SPLINE algorithm
performs significantly better than the MARS
algorithm. The G/S PI,INESalgorithm was closeto
convergenceafter4,000least-squaredoperations(LS
ops), and showed no further improvement after
10,000 LS ops. The MARS algorithm was close to
convergence after 50,000 LS ops, and showed no
further improvement after 80,000 least-squares
operations. The f'mal least-squared error of the best
G/SPLINES model was 1.17; the fatal least-squared
error of the MARS model was 1.12. The optimal
model would have a least-squared earor of 1.08 on
the test set.
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Figure 6: Variable use. The graph is the index versus the
number of times the variable is used in some basis
function in a discovered model. The variables were
counted after 5,000 genetic crossover operations. The
underlying function depends on the f'ast five
variables, and does not depend on the next five
variables. In this case, the use of the variables reflects
the underlying function.

The pertbrmanceofG/SPLINE is reminiscent of the per-
formance curves comparing GeneticAlgorithm-based
systems with Backpmpagafion-based neural networks
[3]. In these systems, the genetic search is rapid at the

beginning of the process,faroutperforming the neural
network. It is only after the problem is well-developed
that the backpmpagation algorithm begins to compete
with the genetic search; eventually, the Backpropagation-
based n_ network slightly outperforms an algorithm
based solely on genetic-Search, it is '_ss_le that the
MARS algorithm and the G/SPLINE algorithm have a
similar relationship with respect to their performance and
spe 

6.2 Experiment 2

This experiment is identical to the fast experiment, with
the exception that the function is changed to have 5
dependent and 95 dependent variables, for a total of 100
laedictor variables. The size of the data sets was
unchanged, with each containing 200 samples. (Note that
this change increased the problem size beyond Fried-
man's stated capabilities of the MARS algorithm.)
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Figure 7: Variable elimination. The graph is the index
versus the number of times the variable is used in
some basis function. The variables were counted after
i0,000 genetic crossover operations. The underlying
function depends on the first five variables, and does
not depend on the other 95 variables. The five
dependent variables were the top five variables in
letms of actoal use in basis functions.

As Figure 6 shows, even with only 200 samples ofdam,
the G/SPLINES algorithm stilldiscoversthe relative
importance of the 5 dependent variables amidst the 95
independent variables.

6.3Experiment 3 .....

In this experiment I wanted to study the effect of sample
set size on the rate of elimination of the independent vari-
ables. .....

This experiment is identical to the Fast experiment,
except that two different data set sample sizes were used.
The Fast set was the standard 200-sample set, and the sec-
ond a 50-sample set.
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Figure 8: Vw_ble elimination and sample size, _The
graphs are the number of genetic operations versus
the percentage use of the five independent variables.
The top graph is for a sample size of 200; the bottom
graph for a sample size of 50. In the top graph, the
variables are gradually eliminated. For the smaller
sample size, the variables are eliminated rapidly.
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Figure 9: Function length. The top graph is the number of
genetic operations versus the least-squared error
(squares: test set, circles: waining set). The bottom
graph is the number of genetic operations versus the
average model length (in basis functions). There is a
rapid increase in average function length, followed by
a slower decrease after the score is minimized.

Figure 6 shows the surprising result that the independent
variables are eliminated from consideration faster when
we have only 50 samples of data rather than 200. This_is
because G/SPLINES does not eliminate variables through
positive identification of them as independent of the
input, but rather, these variables get left behind as vari-
ables with more predictive power are preferentially
selected for crossover. With smaller clam sets, there is
more pressure for smaller models, which causes a fiercer
competition and earlier removal of basis functions which
do not substantially contribute to a model's performance.

6.4 Experiment 4

In this experiment I wanted to study the effect of the
genetic algeriOun on the size of the generated models.
The experimental conditions were identical to those of
the fn_t expetimenL

Figure 6 shows that there is a rapid increase in model size
until the score is nearly minimal; after that, there is a
slower but consistent decrease in model size. This is
likely due to pressure from the genetic algorithm; a com-
pact representation is more likely to survive the crossover
operation without loss. Thus, the genetic algorithm
encourages compacmess of representation in addition to
the advantages such compacmess affords during scoring.
Since we arc often interested in compact models (every-
thing else being equal), this is a beneficial effect.

7 CONCLUSIONS

R is difficult to properly compare the utility of two algo-
n'_ms, even when they share many similar features or are
applied to the same data sets. Such comparisons are too
often uninformative and unneccessarily harsh to the los-
ing algorithm (which is usually not the algorithm devel-
oped by the author). My goal in this work was not to



supplanttheMARSalgorithm,whichI findelegantin
conceptandhasaprovenrecordof successinpractice.
Rather,mygoalwastoextendthereachofthealgorithm
byproposinga variantthatmaynotsuffersomeof the
limitationsoftheprocedm-easproposedbyFriedman,yet
mayretainmostof itsadvantages.I believeI wassuc-
cessful,butwil/leavethefinal judgement to the reader.

In this paper, the problems we selected were relatively
small, and generated relatively small models, containing
perhaps a dozen basis functions. As the complexity of the
problems grow, the necessary size of the model will also
grow; a genetic approach such as G/SPLINE may be the
most effective technique for deriving such models. Simi-
larly, the MARS model is most effective when most of
the predictor variables have additive effects on the
response; the G/SPLINE model, since it is not based on
the incremental sean:h, may be better suited to discover
appropriate models in this case.

The number of least-squares regressions performed was
proposed as a measure of the inherent efficiency of the
algorithms. The stmcuue of the MARS algorithm is such
that the cost of the least-squares regression can be gready
reduced, so direct comparisons of the number of least-
squares regressions is not Iruiy a measure of the amount
of computation involved in executing the algorithms.
Still, even with these improvements, the MARS algo-
rithm cannot effectively handle large (>1000) dala sam-
pies or large (>20) numbers of input variables. It is
appropriate to look for algorithms which keep the many
advantages of the MARS approach while overcoming its
limitations.

Finally, while the G/SPIJNE algorithm uses linear
splines as its basis functions, there is no reason the algo-
rithm could not use non-linear splines and non-spline
basis functions. While splines have attractive properties
that make them generate useful models in many circmn-
stances, there is no reason that other functions, which
may perform well in circumstances where splines fail,
should not be included in the set of possible basis func-
tions. Work on this extension to G/SPLINE is ongoing.

Program Availabifity

The WOLF program implements the G/SPLINE algo-
rithm. This program currendy runs under UNIX on Sun
and Silicon Graphics minicomputers, and under
THINK/C 4.0 on the Apple Macintosh II microcomputer.
The UNIX version of the software and data is available

by FTP on the INTERNET by sending mail to drog-
ers@riacs.edu. The Macintosh version is available on
floppy disk for a 520 copying fee.

It is my goal that the timely sharing of both the software
and the dam sets will encourage comparison of this work
to other work, speed the dissemination of the algorithm,
and encourage others to similarly share their algorithms
and data. My rapid progress in developing this research
program was due in pan to Dr. Friedman's policy of

openly releasing his software (admittedly comment-
free...) for distribution; I encourage others to join me in
following that excellent precedent.
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